Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analytical method for finding the general optical properties of semiconductor deep centers

Identifieur interne : 00DC95 ( Main/Repository ); précédent : 00DC94; suivant : 00DC96

Analytical method for finding the general optical properties of semiconductor deep centers

Auteurs : RBID : Pascal:02-0539414

Descripteurs français

English descriptors

Abstract

The optical properties of deep centers and their dependence on general materials parameters are predicted from an analytical eight-band kp model of deep-center states. A wide variety of deep centers in a wide variety of direct-gap semiconductors can be modeled this way. Scanning-tunneling-microscopy images and measured optical dipoles are in excellent agreement with our model. Our model of deep-center optical properties is the most detailed, multiband kp model which remains fully analytical. Our model of deep centers goes beyond previous work in being able to simultaneously explain, within an analytical framework, both the size and spectral shape of the experimentally measured cross sections for optical transitions from deep levels to (i) the valence band, and (ii) the conduction band; as well as, (iii) observed optical selection rules, and (iv) scanning-tunneling-microscopy images of deep-level bound states. Very good agreement is observed between our model and experiment for deep levels in a variety of (large and small band-gap) semiconductors: the arsenic antisite in both GaAs and In0.53Ga0.47As; the chromium substitutional impurity in both GaAs and InP; and the indium vacancy in InSb. Good agreement is achieved between our model and experiment because both the size and spectral shape of the cross sections for direct optical transitions from the deep level (to the conduction or valence-band edge) is found to be determined by the small-wave-vector component of the deep-center wave function. It is precisely the small-wave-vector component of the deep-center wave function which is described well by our eight-band kp model. Significantly, this agreement between our model and experiment is a vindication of the general materials parameters (Kane dipole, nonparabolic effective masses, band-gap energy, spin-orbit splitting) characterizing our eight-band model of deep centers, rather than a result of careful use of adjustable parameters. Our model shows that the spatial extent of the deep-center bound state is proportional to the Kane dipole, and is thus larger (more delocalized) in a smaller band-gap semiconductor. Moreover, our model shows that, in order to successfully predict optical properties, a linear combination of atomic orbitals describing deep centers must extend over many lattice sites: more than just the neighbors and next-nearest neighbors of the deep center. © 2002 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0539414

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Analytical method for finding the general optical properties of semiconductor deep centers</title>
<author>
<name sortKey="Pan, Janet L" uniqKey="Pan J">Janet L. Pan</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Yale University, P.O. Box 208284, New Haven, Connecticut 06520-8284</s1>
<sZ>1 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Connecticut</region>
</placeName>
<wicri:cityArea>Yale University, P.O. Box 208284, New Haven</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0539414</idno>
<date when="2002-11-15">2002-11-15</date>
<idno type="stanalyst">PASCAL 02-0539414 AIP</idno>
<idno type="RBID">Pascal:02-0539414</idno>
<idno type="wicri:Area/Main/Corpus">00E495</idno>
<idno type="wicri:Area/Main/Repository">00DC95</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conduction bands</term>
<term>Deep energy levels</term>
<term>Effective mass</term>
<term>III-V semiconductors</term>
<term>Measuring methods</term>
<term>STM</term>
<term>Spin-orbit interactions</term>
<term>Theoretical study</term>
<term>Valence bands</term>
<term>Visible spectra</term>
<term>k.p calculations</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7155E</term>
<term>7170E</term>
<term>7840F</term>
<term>7118</term>
<term>Méthode mesure</term>
<term>Etude théorique</term>
<term>Niveau énergie profond</term>
<term>Calcul k.p</term>
<term>Bande valence</term>
<term>Bande conduction</term>
<term>STM</term>
<term>Semiconducteur III-V</term>
<term>Masse effective</term>
<term>Interaction spin orbite</term>
<term>Spectre visible</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The optical properties of deep centers and their dependence on general materials parameters are predicted from an analytical eight-band kp model of deep-center states. A wide variety of deep centers in a wide variety of direct-gap semiconductors can be modeled this way. Scanning-tunneling-microscopy images and measured optical dipoles are in excellent agreement with our model. Our model of deep-center optical properties is the most detailed, multiband kp model which remains fully analytical. Our model of deep centers goes beyond previous work in being able to simultaneously explain, within an analytical framework, both the size and spectral shape of the experimentally measured cross sections for optical transitions from deep levels to (i) the valence band, and (ii) the conduction band; as well as, (iii) observed optical selection rules, and (iv) scanning-tunneling-microscopy images of deep-level bound states. Very good agreement is observed between our model and experiment for deep levels in a variety of (large and small band-gap) semiconductors: the arsenic antisite in both GaAs and In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As; the chromium substitutional impurity in both GaAs and InP; and the indium vacancy in InSb. Good agreement is achieved between our model and experiment because both the size and spectral shape of the cross sections for direct optical transitions from the deep level (to the conduction or valence-band edge) is found to be determined by the small-wave-vector component of the deep-center wave function. It is precisely the small-wave-vector component of the deep-center wave function which is described well by our eight-band kp model. Significantly, this agreement between our model and experiment is a vindication of the general materials parameters (Kane dipole, nonparabolic effective masses, band-gap energy, spin-orbit splitting) characterizing our eight-band model of deep centers, rather than a result of careful use of adjustable parameters. Our model shows that the spatial extent of the deep-center bound state is proportional to the Kane dipole, and is thus larger (more delocalized) in a smaller band-gap semiconductor. Moreover, our model shows that, in order to successfully predict optical properties, a linear combination of atomic orbitals describing deep centers must extend over many lattice sites: more than just the neighbors and next-nearest neighbors of the deep center. © 2002 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>92</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Analytical method for finding the general optical properties of semiconductor deep centers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PAN (Janet L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Yale University, P.O. Box 208284, New Haven, Connecticut 06520-8284</s1>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>5991-6004</s1>
</fA20>
<fA21>
<s1>2002-11-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0539414</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The optical properties of deep centers and their dependence on general materials parameters are predicted from an analytical eight-band kp model of deep-center states. A wide variety of deep centers in a wide variety of direct-gap semiconductors can be modeled this way. Scanning-tunneling-microscopy images and measured optical dipoles are in excellent agreement with our model. Our model of deep-center optical properties is the most detailed, multiband kp model which remains fully analytical. Our model of deep centers goes beyond previous work in being able to simultaneously explain, within an analytical framework, both the size and spectral shape of the experimentally measured cross sections for optical transitions from deep levels to (i) the valence band, and (ii) the conduction band; as well as, (iii) observed optical selection rules, and (iv) scanning-tunneling-microscopy images of deep-level bound states. Very good agreement is observed between our model and experiment for deep levels in a variety of (large and small band-gap) semiconductors: the arsenic antisite in both GaAs and In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As; the chromium substitutional impurity in both GaAs and InP; and the indium vacancy in InSb. Good agreement is achieved between our model and experiment because both the size and spectral shape of the cross sections for direct optical transitions from the deep level (to the conduction or valence-band edge) is found to be determined by the small-wave-vector component of the deep-center wave function. It is precisely the small-wave-vector component of the deep-center wave function which is described well by our eight-band kp model. Significantly, this agreement between our model and experiment is a vindication of the general materials parameters (Kane dipole, nonparabolic effective masses, band-gap energy, spin-orbit splitting) characterizing our eight-band model of deep centers, rather than a result of careful use of adjustable parameters. Our model shows that the spatial extent of the deep-center bound state is proportional to the Kane dipole, and is thus larger (more delocalized) in a smaller band-gap semiconductor. Moreover, our model shows that, in order to successfully predict optical properties, a linear combination of atomic orbitals describing deep centers must extend over many lattice sites: more than just the neighbors and next-nearest neighbors of the deep center. © 2002 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A55E</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A70E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H40F</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A18</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7155E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7170E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7840F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7118</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Méthode mesure</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Measuring methods</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Niveau énergie profond</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Deep energy levels</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Calcul k.p</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>k.p calculations</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Bande valence</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Valence bands</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bande conduction</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Conduction bands</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>STM</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>STM</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Masse effective</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Effective mass</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Interaction spin orbite</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Spin-orbit interactions</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Spectre visible</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Visible spectra</s0>
</fC03>
<fN21>
<s1>316</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0245M000236</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00DC95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00DC95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0539414
   |texte=   Analytical method for finding the general optical properties of semiconductor deep centers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024